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Executive Summary

The project ‘Fuel Cell Hybrid Power Pack for Rail Applications” was an innovation action in Horizon
2020, the most significant research programme in the European Union. Aimed at reducing the
production costs of fuel cell systems in transport applications while increasing their service life to levels
that can compete with conventional technologies, the programme has awarded the project entitled
FCH2Rail, under Grant Agreement No. 101006633 ([1]).

FCH2Rail is a project focused on developing, building, testing, demonstrating and homologating a
scalable, modular and multi-purpose Fuel Cell Hybrid PowerPack (FCHPP) applicable for different rail
applications (multiple units, mainline locomotives and shunting locomotives). It is also suitable for
retrofitting existing electric and diesel trains, to reach TRL7.

The purpose of Deliverable D1.1 is to analyse and gather requirements on hydrogen trains from
operational and infrastructural parameters. This is done within two steps. First a high-level line analysis
is performed to collect infrastructural and operational characteristics for various countries in the
European Union. In the second steps, representative use-cases are identified and simulated to evaluate
detailed requirements on the FCHPP.

The first part of the document (section 1) defines requirements of interests. The defined requirements
are described. A methodology is described to gather and evaluate these requirements from various
data sources. Section 2 describes and characterises then the data used such as timetables, digital
elevation models and Open Street Map. Section 3 states the rolling stock of the investigating countries
Spain, Portugal, Germany and Slovakia. The vehicles, their fleet sizes and ages are shown and
categorised by their usages.

Section 4 characterises all railway services suited for the operation of hydrogen (bi-mode) trains (i.e.
line-based requirements) in the investigating countries on a higher level. For each service, the
requirements defined in section 1 are visualised and put in respective to each other and to vehicle
usages. The investigated countries are compared with each other. Section 5 describes a detailed
investigation of various use-cases. A use-case is the specific operation of a vehicle on a certain line over
a business day. A mechanical energy simulation is performed for each use-case. Simulation results are
finally compared. In section 6 the findings of this study and achievable market potentials for generic
FC trains are discussed.
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Glossary of Terms

Acronyms Description

CA Consortium Agreement

GA Grant Agreement

FCH2Rail Fuel Cell Hybrid PowerPack for Rail Applications
DSM Digital Surface Model

FCHPP Fuel Cell Hydrogen Power Pack

ESS Energy Storage System

FC Fuel Cell

Bi-mode FCHMU Bi-mode Fuel Cell Hybrid Multiple Unit
DMU Diesel Multiple Unit

OoSM Open Street Map

BEMU Battery electric multiple unit
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1. Definition Of Requirements

This deliverable aims to identify and describe various line-based requirements and use-case based
requirements. In this chapter, requirements of interest are defined. The application of these
definitions will be described in chapters 4 “Line-based requirements” and 5 “Use-case based

requirements”.

As the derivation of requirements is done to enable and support the generic train development, the
main perspective is on the vehicle. Therefore, service profiles instead of just railway tracks are
considered here. A service is defined as a railway operation between two fixed start- and end stations
scheduled and operated with a vehicle. The services will be considered on two levels: In the line
analysis all routes with non-electrified parts in the study area are considered. In this step, only single
trips are considered. On the second level specific use-cases, meaning the operation of a specific vehicle
over a business day are considered. For these use-cases a more thorough analysis will be performed,
including simulations of the respective traction energy demand at wheel. For this, the following
requirements are evaluated:

Table 1: Line-based requirements

Requirement Description

Route length  Distance between start and end station. Metre m
Electrification Percentage of the travelled route under catenary. Percentage %
degree

Longest Longest continuous catenary-free section in one trip. Metre m
autonomy

Cumulated Summed distance on non-electrified parts in one trip. Metre m
autonomy

Start-end Slope resulting from the elevation difference of the Permille %o
slope start and terminus station and the trip length.

Net elevation Absolute elevation difference between start and Metre m
gain terminus station.

Average stop Route length divided by number of stops. Metre m
distance

Average Route length divided by trip time. Kilometre Km/h
velocity per hour

Table 2: Use-case-based requirements

Requirement Description
Trips per day Maximum number of trips (start-to-end or return) of a Count #

specific vehicle over a business day.
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Daily Cumulated route length over a business day. Metre m
distance

Daily travel Cumulated travel time over a business day in minutes. Minutes min
time

Longest Longest continuous catenary-free section over a business Kilometre Km/h
autonomy day.

Cumulated Summed distance on non-electrified parts over a business Kilometre  Km/h
autonomy day.

Requirements derived with mechanical energy simulations are described in Table 3. Energy and power
are taken at wheel level. Auxiliary demand or train efficiencies are not going to be considered.

Table 3: Use-case attributes from simulation

Requirement Description Unit Sl
Traction energy at wheel. Positive amount of energy Energy kWh
needed to cover traction
demand over time for catenary-

free sections.

Recuperative braking energy Negative amount of energy Energy kWh
at wheel. needed to cover traction

demand over time for catenary-

free sections.

Specific traction energy at Positive amount of energy Energy / kWh/(tkm)
wheel (without recuperative divided by vehicle weight and Weight*Kilometre
braking energy). covered kilometres for catenary-

free sections.
Mean traction power at the The average of the current Power kw
wheel. power needed to cover traction

energy at wheel level for
catenary-free sections.

Peak traction power at the The maximum traction power Energy kw
wheel. over the route at wheel level
for catenary-free sections.

1.1 Methodology for line-based requirements

In order to analyse the rail networks in term of the above defined line-based requirements various
tools for the investigating countries are developed. The data used is described in section 2.
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For Spain and Portugal, passenger railway services currently operated with diesel trains were
identified. Lines that were known to be electrified during the making of this study were excluded from
the analysis. If a service is operated in various way over the same routes (such as number of stations
or varying vehicles) were considered as different services. From timetables station names, trip times,
driving times and stop times were gathered. A routing algorithm was deployed to determine the routes
over the rail network for each service. Next, a Dijkstra routing algorithm [1] was deployed over a noded
Open Street Map (OSM) based routing network. For this vector-based rail networks from the OSM data
model (keys:railway; unfit tracks such as industrial or tram tracks were filtered out) were acquired. The
network was noded using the pg-routing tool framework for PostgreSQL. The stations in the gathered
timetables were matched with OSM-stations and connected to the nodes of the routing network. For
this a chained distance-query using stepwise matching distances from 0.00001 arcseconds to 0.0075
arcseconds were used. As Dijkstra is a shortest path-algorithm, deviations from the actual routes could
be avoided by routing between each station along a service. OSM attributes such as electrification
information, maximum speeds, tunnels and bridges were than reapplied to the acquired routes by a
spatial overlay.

The elevation profiles were derived from a digital surface model (DSM). To compensate data
inaccuracies in the DSM as well as infrastructure (i.e. tunnels, bridges, etc.) a set of geostatistical
countermeasures were applied to derive a smooth elevation profile. Line base requirements were then
derived (compare Table 1).

In Germany there is a multitude of routes and vehicles for passenger services operated not/partly
under catenary. In Germany there is a nationwide timetable available, provided by German railway
operators and client bodies. These have been extended with geo-routes. For Germany, all trips within
the public timetable operated not or partly under catenary have been filtered. As the timetable data
is at a high resolution (meaning each trip is included), similar trips were merged into services. For
processing reasons, return journeys of a service were also considered separately in this dataset. As
vehicle types per service are unknown, the rolling stock was described separately (compare section
3.3). The geo-routes available are not attributed with infrastructural information. In a stepwise nearest
neighbour processing chain, the trips were attributed with maximum speeds and electrifications from
OSM. While this process is sufficiently accurate to get a good overview of the requirements it has its
limitations in terms of errors and gaps in data. Longest autonomies might be flawed in some cases as
data gaps in electrification attributes could not be accounted for.

For Slovakia, the line-based requirements were abstracted manually for each service and delivered by
Z5SK (Zelezni¢nd spolo¢nost Slovensko).
1.2 Simulation methodology

Use-cases were chosen for detailed investigation, i.e. for mechanical energy simulation. The use-cases
were chosen to represent:
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i) the most common operations and
ii) the most demanding operations.

They were chosen within workshops of the contributing project partners in conjunction with statistical
measures of the line bases requirements.

The acquired and derived attributed routes generated in section 1 were translated into arrays and
transferred into a simulation-friendly data structure. To consider possible circulations, the maximal
possible circulation of a train over a business day was derived from the timetables, representing the
worst-case circulation to define maximum autonomy over a business day. Based on the use-cases
derived, simulation input files for longitudinal dynamic simulations were generated.

Prior in-depth knowledge specifically of the energy storage system (ESS), fuel cell (FC) as well as the
drivetrain efficiencies is deliberately excluded. Furthermore, specific auxiliary demands, as cabin air
conditioning or battery and fuel cell cooling are excluded in this study as well. Instead indicative
characteristic values in terms of cumulated traction energy and time-based power demand at the

wheels are evaluated. A more concrete powertrain layout is topic to subsequent Deliverable D1.4.

A power demand profile is obtained with the Trajectory Planner Tool (TPT). This algorithm, developed
by DLR, represents a longitudinal dynamic simulation of rail vehicles. Input variables are timetable and
route data as well as vehicle variables, such as, mass, traction power and acceleration. The TPT
calculates the speed profile, which is exclusively composed of acceleration, deceleration and cruising
phases. Hereby, a search algorithm is deployed, which merges aforementioned acceleration, cruising
and braking phases together to meet the given timetable and applicable speed limits. [2]. Two velocity
profiles are calculated. A profile with maximum possible speed and a profile with a reduced velocity.
The applicable search criterion for the Reduced- Velocity Profile is to minimise average speed without
violating the timetable. If a timetable compliant solution cannot be achieved with this approach, the
All-Out-Profile is applied as a fallback solution. The different profiles are shown in Figure 1.

Comparison of Velocity Profiles

[Speed Limits _—AIVI Out Profile —Reduced Valbcity Profile|

=100
;E |
>

g 0
2

% "2 a2 e @ 100 200 140
Distance [km]
Figure 1: Comparison “All-Out-Profile” and “Reduced Velocity Profile”
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As a result of the speed trajectory and the train-specific characteristics, the power profiles are
generated at wheel level.

-

Percentile Absolute Power at the Wheel
1200 F ! ! !
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Figure 2: TPT generated Velocity and Power Profile (left) and time weighted load curve at the wheel of the use-case
Zaragoza — Canfranc — Zaragoza.

The complete demand profile, as seen on the left side of Figure 2, is averaged over a range of suitable
moving time windows. As this study focuses on the investigation of bi-mode FCHMU, only the non-
electrified sections of the use-case are consulted for the further study. Power requirements for the
most demanding sections in use-cases are indicated by high percentiles in the time weighted load
curve (i.e. the 100th percentile represents the time window with the highest average load in the driving
circle; here 1120 kW over 100 seconds). This deliverable covers requirements arising from operation
and infrastructure. Analysis on components is part of subsequent deliverables such as D1.3 [3] and
D1.4 [4].
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2. Data And Inputs

This chapter describes the data used in the analysis of line-based requirements und use-case based
requirements.

The project partners Renfe and IP provided timetables of railway services operated partly or
completely catenary-free. They provided station names, locations, distances, stop times, arrival times
and departure times (accuracy one minute). Furthermore, they provided types and characteristics of
the vehicles operated on the services as well as passenger loads and number of circulations.
Infrastructural managers IP and Adif provided information about current and future electrification,
gauges, elevation information, shunting yards and associated shunting locomotives. CAF provided
vehicle specifications needed for mechanical simulations.

From public data sources Open Street Map data was used to assess route characteristics such as
electrification, gauge and speed limits. Missing and inconsistent attributes were compensated with
information from infrastructure managers (see above) and with geodata from the national centre for
Geographic Information (CNIG, Centro Nacional de Informacién Geogréfica) [5], namely vector files of
the transport networks (RT, Redes de Transporte (RT). To assess slopes and elevations JAXA ALOS DSM
[6] was used with a 0.1 to 0.1 grid size (approx. 30 x 30 metres) and vector files from the CNIG (see
above). For the analyses of Germany, the used timetables are based on GTFS-data provided by DELFI
[7] and pre-processed by GTFS.de [8].

The data sets produced within this task have been enriched with metadata and uploaded. The data is
published under the DOIs 10.5281/zenodo.6355894 and 10.5281/zenodo.6359030.

3. Rolling Stock

In this chapter the diesel-bound rolling stock of each investigating country will briefly be described.
The here described vehicles with an emphasis on diesel multiple units (DMU) can potentially be
substituted by fuel cell trains. In relation to this, the railway systems are described in terms of gauges,
electrifications and operational characteristics in D1.3 [3].

3.1 Spain

3.1.1 Vehicles for passenger services

In non-electrified or part-electrified passenger railway services, three kind of vehicles are used: i)
multiple units for Iberian gauge, ii) multiple units for metre gauge and iii) mainline locomotives carrying
Talgo coaches. Table 4 to Table 6 list the vehicles currently in operation.

Page 6 of 96

FCH FUEL CELLS AND HYDROGEN SRl
JOINT UNDERTAKING



.
CFCH,RAIL
)

3.1.1.1 DMV lberian gauge:

Table 4: DMU Iberian gauge in Spain

Fuel Cell Hybrid Power Pack for Rail Applications
Grant Agreement Number: 101006633
Deliverable Number: D1.1

Vehicle Capacity Max Speed Autono Fleet Picture
(Seats) [km/h] my [km]  Size
$592 MD 228 120 45
S592 Cercanias 200 120
$592.2 MD 200 140
S$594 126 160 1000 23
S 596 56 120 1000 23
S$598 188 160 1000 21
S599 184+1 160 1000 50
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3.1.1.2 DMU metric gauge:

Table 5: DMU metric gauge in Spain

Vehicle Capacity Max Construction Picture
(Seated  Speed /Status
and [km/h]
Standing)
S$2400 216 80 29 1983-86
refurbished
1998-2000
$2600 299 80 24 1966 - 74
refurbished
1994-1997
$2700 90 120 17 2009-2010
52900 78 100 12 2010-2011

3.1.1.3 Mainline Locomotives for passenger railway services:

Table 6: Mainline locomotives for passenger services in Spain

Vehicle Traction Max Speed Fleet Construction Gauge Picture

[km/h] Size  /Status [mm]

S334 Diesel- 200 28 2006 1668
electric
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S333.30 Diesel- 120/160 32 2002 1668
0 electric

3.1.2 Shunting locomotives

The dominant types of shunting locomotives in Spain are Class 310 and Class 311. These are owned
and operated by Adif on several shunting yards across the country. Adif will purchase 22 Stadler
Eurodual hybrid locomotives (diesel + electric) for 1435 gauge and there is a forecast to purchase eight
similar locomotives for 1668 mm and three more for 1000 mm.

Table 7:Shunting locomotives in Spain

Vehicle Traction Max Speed Fleet Size Constructio Gauge Picture

[km/h] n/Status [mm]

310 Diesel- 110 55 (54) 1989 1435
electric

311.1 Diesel- 90 51 (39) 1986 1435
electric

319.2 Diesel- 120 5 1965 1435/
electric 1668
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319.3 Diesel- 140 2 1965 1435/
electric 1668

321 Diesel- 120 6 1966 1435
electric

*Image sources: https://www.listadotren.es/

3.2 Portugal

In the upcoming section the Portuguese DMU-stock will be described. In Portugal there are three DMU-
types currently in operation, with a total fleet of 48 vehicles. As electrification plans are to be rolled-
out near term, it is expected that parts of the fleet will drop out of operation. Mainline locomotives

with diesel propulsion are not in operation.

Table 8: DMUs in Portugal

Vehicle Max Speed [km/h] Fleet Size Picture
uDD 450 120 19
UTD 592 90 7
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3.3 Germany

In Germany, a multitude of diesel-fuelled trains are in operation. Pagenkopf et.al. (2020) [9] describe
and characterise the rolling stock for passenger services in Germany. Figure 3 shows the most common
DMU operated in Germany and respective construction years from 2000 to 2019. As can be seen at
the beginning of the 2000 decade, more vehicles where produced than in the years from 2006.
Assuming a typical vehicle service life of approx. 30 years, this indicates fleet renewal in the next
decade.
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Figure 3: Construction years of DMU'S in Germany (adapted from [9])

In Pagenkopf et.al. (2022) [10], German rolling stock of shunting locomotives where analysed. Figure
4 shows the number of newly built and refurbished diesel or diesel-hybrid shunters between 1990 and
2019. The data does not distinguish between propulsion technology for the time series. In 2020 approx.
60% of new built shunters had diesel combustion engines and 40 % had diesel-hybrid propulsion.
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Figure 4: Construction years of shunting locomotives in Germany (adapted from [10]).
Alternative propulsion technologies

In Germany, new propulsion technologies for multiple units are under development. In 2018 the
world's first two hydrogen electric multiple units were put in scheduled passenger service at Elbe-
Weser-Netz between Cuxhaven, Bremerhaven, Bremervoérde and Buxtehude. Battery trains of the
Stadler Akku Flirt type have been ordered for NAH.SH's northern and eastern tender network (to be
used in regular service from 2022) and for Pfalznetz in southern Germany (to be used in regular service
from 2025).

In shunting operation, hybridised diesel locomotives have been replacing more and more diesel
locomotives in recent years, both concerning retrofits but even more so in terms of new-build
locomotives (e.g. Alstom Prima H3). In 2022, up to 50 catenary electric shunting locomotives with
additional batteries for last mile operations, have been ordered at Vossloh Locomotives (Type DM 20-
EBB). When it comes to hydrogen locomotives, up to now, there are a couple of research and
demonstrator projects across Germany and Europe (e.g. by PESA) targeting new-build and retrofitting
diesel locomotives both to fuel cell electric and to hydrogen internal combustion engine powertrains.
However, as of January 2022, no large order on hydrogen locomotives has been put across the market
so far, probably mainly because, these locomotives are still in a pre-commercial development phase.

3.4 Slovakia

Seven different DMU models are currently in operation in Slovakia. The drive technologies are diesel-
hydraulic and diesel-electric. 80% of the transport service in Slovakia takes place under catenary. A
minor number of tracks are due to electrification. The DMU fleet is dominated by DMU type ZOS Vrutky
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Regio Mover (53 vehicles). Other DMU-types used in Slovakia are 840, 425.9 (metre gauge), 230, 310,
812, 813 and 861. Mainline locomotives operated are Type 757 and OBB 2016.

For Route 140 from Nové Zamky to Prievidza, ZSSK intends to introduce two FCH units on this route.
After successful pilot deployment, there are intentions to replace all diesel units with FCH units for
these lines, i.e. overall 12 units by the end of 2030.

4. Line-based Requirements

This section describes line-based requirements as described in section 1. Line-based requirements
have been gathered for railway services which are completely or partly catenary-free. If a route is
serviced with various vehicles and/or stations they are considered to be separate services as the
energy demand varies. The methodology of this chapter is described in section 1.1.

4.1 Line analysis Spain and Portugal

This chapter describes line-based requirements for Spain and Portugal. In Spain and Portugal 73
services were considered for analysis.

4.1.1 Route Length, electrification degree, longest autonomy and cumulated autonomy

This section covers route lengths and electrifications/autonomies. The distributions of the related line-
based requirements are shown in Figure 5.
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Figure 5: Distribution of route length, electrification degree, longest autonomy and cumulated autonomy for Spain and
Portugal.

Service lengths are distributed between 6 and 1100 km length. Especially low route lengths are short
transit services, for instance the commuter line C-3 Alacant-Terminal - Sant Vicent Universitat, where
mostly students are transported from the city centre to the university. The electrification is shown in
the upper right pane. Electrification degrees of 100 percent are considered in this analysis when DMU
are operated on these tracks. There can be many reasons for this. For instance, it can apply that the
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vehicle will be used on a different service alter and that it is cheaper to use a DMU under catenary
then to change vehicle and driver. As there are many possible operational reasons it was assumed that
operation with bi-mode trains on these lines will be profitable or beneficial.

Figure 6 left pane shows the sorted lengths of all services and the lengths of their electrified sections.
Non-electrified sections on part-electrified routes represent autonomy requirements (right side). The
autonomy is the sum of lengths of all non-electrified sections. The right pane shows the autonomies
for all Spanish and Portuguese lines considered, stacked with the electrified length and sorted by
autonomy length. The lines with the highest autonomies are the ones with the lowest electrification
degree, and the one with the lowest autonomies are the ones with the highest electrification degree.
As this only represents single trips, target autonomy requirements for diesel trains can substantially
differ by the number of trips for a vehicle. Circulations and daily autonomies are considered in the
detailed analysis covered in section 5.
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I Electrified

1000 1000

800 800 -

600 600

400

Route length [km]
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200

0 10 20 30 40 50 60 70

Services sorted by route length 0 10 20 30 40 30 60 70

Services sorted by cumulated autonomy

Figure 6: Sorted route length, electrified sections and autonomies.

Figure 7 shows the distribution of route lengths (left) and autonomies (right) for various service types.
Mainline locomotives cover services with general longer distances and in relation longer autonomies.
Multiple units used on metre gauge are commonly shorter with shorter autonomies.
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Figure 7: Distributions of route lengths and cumulated autonomy per service type in Spain and Portugal.

Figure 8 shows the annual train kilometres under catenary (blue) and not under catenary (red) for
rolling stock vehicle types. It can be seen that some vehicles account for a majority of train kilometres
(5252, AUT 2400). The distance covered by vehicle types are shown in Figure 8. Vehicles with a smaller
variance (i.e. a smaller box) have specific usages in terms of distances. Larger boxes represent more

various usages
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Figure 8: Annual train kilometre and route length per vehicle for Spain/Portugal.

The frequency of services (i.e. trips per day) range between 2 (often connecting periphery stations with
long driving times) and 55 (commuter lines connecting bigger centres with the surroundings). As can
be seen in Figure 9, short services tend to have higher frequencies than long-distance services.
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4.1.2 Average stop distance and average speed

During a railway trip, the acceleration phases are usually the most energy-intensive processes. A low
stop distance means that vehicles have to start frequently, resuming in higher energy demands. If the
stop distance is low and the average velocity is high, high demands on the FCHPP are to be expected.
Low average velocities can indicate long standing times in stations or difficult terrain. Figure 10 shows
the distribution of both parameters.
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Figure 10: Distribution of average stop distances and average velocities for Spain and Portugal.

Figure 11 shows the average stop distance plotted over the average velocity for various vehicle types.
The upper right area in the left scatter plot represents high demanding lines. Mainline locomotives
cover the longest routes, followed by DMU on Iberian gauge. Metre gauge lines are often operated on
low average velocities. The scatter plot on the right shows the same distribution for various vehicle
models.
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Figure 11: Average velocity over average stop distance for Spain and Portugal.

4.1.3 Start-to-end slope, start-to-end elevation gain

Elevation gains and gradients have significant influence on the energy demand of routes. While the
total elevation gain mainly influences the total consumption and the average power of the fuel cell
and battery components, high gradients indicate high peak powers of the FCHPP. Figure 12 shows the
distribution of absolute elevation gains between start station and terminal station. A quarter of the
routes have elevation gains below 27 m and 50 % of the routes have elevation gains below 195 metres.
The highest elevation gains are at 980 metres. This is the elevation difference between the start
elevation and the end elevation. Demanding topologies throughout the route are not considered.
Those are reflected in the use-cases analysis in chapter 5. Slopes vary between 1.6 %o and 11.7 %o with

the median at 0.85 %o.
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Figure 12: Distribution of start-to-end slopes and net elevation gains for Spain and Portugal.

High-demand services and low demand services can be identified in conjunction with the average stop
distance and the average velocity. Figure 13 shows service attributes plotted over three axes. Most
demanding points can be found in the upper front corner where the average stop distance is low, the
average speed is high and elevation gains and or slopes are high. As seen before, mainline locomotives
and some DMU-services account for the most demanding lines while metre gauge services have low

demanding also in terms of elevation.
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Figure 13: 3D-scatterplots of avg. velocity, avg. stop distance and net elevation gains/ start-to-end-slopes.
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This chapter describes line-based requirements for Germany. In Germany 1417 varying services were
considered for analysis. This high number is because in the GTFS timetable, each trip over a year is
included. Similar trips (same stations and similar stop/arrival times) were merged as well as turnaround
trips. Very rare trips (< 30 per year) were excluded. Nevertheless, trips of a service vary very often in
start/end stations and number of stations, much more than in Spain, Portugal and Slovak.

4.2.1 Route Length, electrification degree, longest autonomy and cumulated autonomy.

This section covers route lengths and electrifications/autonomies. The distributions of the related line-

based requirements are shown in Figure 14.
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Figure 14: Distribution of route length, electrification degree, longest autonomy and cumulated autonomy for Germany.

Service lengths are distributed between 2 and 330 km length. Low electrification degrees are common
(median = 4.5 %). Figure 15 left pane shows the sorted lengths of all services and the lengths of their
electrified sections. The right upper pane shows the autonomies for all German lines considered,
stacked with the electrified length and sorted by autonomy length. Electrification degrees are evenly
distributed over route lengths and autonomies. Autonomies range between 2 and 220 km.
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Figure 15:Sorted route length, electrified sections and autonomies.

The frequency of services (i.e. trips per day) range between 1 (often trips at the beginning or end of a
business day, leaving or arriving depots) and 59. As can be seen in Figure 16 short services tend to have
higher frequencies than long-distance services.
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Figure 16: Daily trips against route length for Germany.

4.2.2 Average stop distance and average speed

During a railway trip, the acceleration phases are usually the most energy-intensive processes
(compare 4.1.2). Figure 17 shows the distribution of both parameters. Average stop distances range
between 800 metres and 39 km with the majority between 3.4 (25 %) and 7.3 (75 %). Average velocities
(including stop times) range between 30 km/h and 111 km/h.
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Figure 17: Distribution of average stop distances and average velocities for Germany.

Figure 18 shows the average stop distance plotted over the average speed. The upper right area in the
scatter plot represents high demanding lines. The figure also shows that longer lines tend to have
longer stop distances.
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Figure 18: Average velocity over average stop distance for Germany.

4.2.3 Start-to-end slope, start-to-end elevation gain

Elevation gains and gradients have significant influence on the energy demand of routes (see section
4.1.3). Figure 19 shows the distribution of net elevation gains between start station and terminal
station. A quarter of the routes have elevation gains below 20 m and 50 % of the routes have elevation
gains below 57 metres. The highest gains occurring account for up to 607 m altitude change.
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Figure 19: Distribution of start-to-end slopes and net elevation gains for Germany.

4.3 Line analysis Slovakia

This chapter describes line-based requirements for Slovak. In Slovak 51 services were considered for
analysis.

4.3.1 Route Length, electrification degree, longest autonomy and cumulated autonomy

This section covers route lengths and electrifications/autonomies. The distributions of the related line-
based requirements are shown in Figure 20.
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Figure 20:Distribution of route length, electrification degree, longest autonomy and cumulated autonomy for Slovakia.

Service lengths are distributed between 7.5 and 106 km in length. Low electrification degrees are
common (75 % of services have electrification degrees below 18 %) Part-electrified routes are rare.
Figure 21 left pane shows the sorted lengths of all services and the lengths of their electrified sections.
The right upper pane shows the autonomies for all Slovakian lines considered, stacked with the
electrified length and sorted by autonomy length. Autonomies range between 0 and 106 km.
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Figure 21: Sorted route length, electrified sections and autonomies.
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Figure 22 left pane shows the annual train kilometres under catenary (blue) and not under catenary
(red) for rolling stock vehicle types. It can be seen that some vehicles account for a majority of train
kilometres (types 2016, 861 and 757) i.e. those are the most common vehicles. The right pane shows
vehicles over route lengths. Vehicles with a smaller variance (i.e. a smaller box) have specific usages in
terms of distances. Larger boxes represent more various usages.
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Figure 22: Annual train kilometre and route length per vehicle for Slovakia.

Unlike in other countries, frequencies are evenly distributed along route lengths, i.e. long routes have
similar frequencies than short routes (Figure 23).
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Figure 23: Daily trips over route length for Slovakia.

4.3.2 Average stop distance and average speed

During a railway trip, the acceleration phases are usually the most energy-intensive processes
(compare 4.1.2). Figure 24 shows the distribution of both parameters. Average stop distances range
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between 1.9 km and 7.2 km with the majority between 2.8 km (25 %) and 4 km (75 %). Average speeds
range between 30 km/h and 54 km/h.
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Figure 24: Distribution of average stop distances and average velocities for Slovakia.

Figure 25 shows the average stop distance plotted over the average speed for various vehicles. The
upper right area represents high-demand lines, often covered with Type 813.
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Figure 25: Average velocity over average stop distance for Slovakia.

4.3.3 Start-to-end slope, start-to-end elevation gain

Elevation gains and gradients have significant influence on the energy demand of routes (see section
4.1.3). Figure 26 shows the distribution of net elevation gains between start station and terminal
station. A quarter of the routes have elevation gains below 38 m and 50 % of the routes have elevation
gains below 120 metres. The highest gains occurring are 552 metre of altitude change.

% _ i
’ o Nze():elevatio?r’wmgain [m]‘mCI 500 ’ ’ ) Star‘f—to-endaslope [‘1;.)] ” b b

Page 25 of 96 -
G8E S0 0 7% | FUELCELLS AND HyDRogeN [

JOINT UNDERTAKING



c
ﬁCHZ RA /L Fuel Cell Hybrid Power Pack for Rail Applications
00

Grant Agreement Number: 101006633
Deliverable Number: D1.1

Figure 26: Distribution of start-to-end slopes and net elevation gains for Slovakia.

4.4 Summary of line-based requirements
In this section line-based requirements are compared for the four investigated countries.

In Spain and Portugal route lengths are longer than in Germany and Slovakia with longer autonomies
on average. Related to this, the average stop distances also tend to be higher in Spain and Portugal.
Average velocities are similar in Germany, Spain and Portugal while being slower in Slovakia. Net
elevation gains are highest in Spain on average; however some German lines range up to 600 m
elevation gain.
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Figure 27: Comparison of distributions of line-based requirements across countries.
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5. Use-case Based Requirements

This chapter describes use-cases and requirements derived from use-cases. All considered use-cases
are presented in detail and the infrastructural and operational requirements are shown. For each
multiple unit use-case a mechanical energy simulation has been performed. The results for multiple
units are summarised in sub chapter 5.1.3.

The use-cases were selected in a way that they represent i) common operation ii) common
infrastructure and iii) common vehicles. To assign use-cases as representative as possible, workshops
were held with the contributing project partners as well as with members of German railway client
bodies (BAG-SPNV, Bundesarbeitsgemeinschaft Schienenpersonennahverkehr). In these workshops,
important, challenging or representative services were identified. These were supplemented by
further use-cases based on attributes of the whole railway network being considered. There are use-
cases for multiple units in Spain, Portugal and Germany. For mainline locomotives two use-cases were
identified. As shunting locomotives usually do not operate on assigned routes, a generic use-case was
designed.

In this deliverable the traction power demand is obtained at wheel level meaning only power and
energy for traction. The currently running diesel units cannot recuperate energy. However, as the
investigation covers multiple units with electric drives, it is assumed electrical brakes are available.
Auxiliary demands, traction drive efficiencies and block sizes are issues of subsequent deliverables
D1.2, D1.3 [3] & D1.4. [4] The characteristics of vehicles used for simulations are oriented on the DMU
rolling stock namely S592, S594, 5599, Lint41 BR648 and Regio Shuttle BR650. The used timetables can
deviate from the actual timetables. This is due to seasonal changes in the timetable and the accuracy
of the public timetables (resolution in minutes). During the project, the knowledge base on the used
data broadened respective changes have been made to the data set, e.g. stop times & electrification
patterns. Departure was chosen to create the longest possible autonomy. To determine the trips per
day, the longest possible circulation for a train within the timetable was derived.

5.1 Use-cases multiple units

In this chapter, the use-cases for multiple units will be presented. Use-case based requirements will
be stated such as power and energy requirements at wheel level to be covered by fuel cell system and
battery. The use-cases are input for simulations in subsequent deliverables.
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5.1.1 Spain/Portugal

5.1.1.1 Zaragoza-Canfranc

Table 9: Use-case Zaragoza - Canfranc

Service: Zaragoza — Canfranc

Stops [#]: 14
Vehicle: Aut. 596; Aut. 599

Additional information:

- Zaragoza-Huesca corridor is a three-rail track (1435 mm and 1668 mm)
- The 25 kV catenary is useable only for 1435 mm trains
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Figure 28: Operational profile Zaragoza-Canfranc
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00

Grant Agreement Number: 101006633

Deliverable Number: D1.1

Track kilometer [km]
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Figure 29: Vehicle operation over a business day for Zaragoza-Canfranc
Table 10: Line-based requirements for Zaragoza — Canfranc.
Use-case attribute Value Unit
Route length 221 km
Electrification degree 26 %
Start-end elevation gain 998 m
Start-end slope 4.52 %o
Travel time 4.02 h
Average stop distance 15.8 km
Average velocity 55 Km/h
Table 11: Use-case based requirements for Zaragoza — Canfranc.
Use-case attribute Value Unit
Maximum trips per day 2 #
Daily distance 442 Km
Daily travel time 7.92 h
Longest autonomy 327 Km
Cumulated autonomy over a business day 327 Km
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Grant Agreement Number: 101006633
Deliverable Number: D1.1
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Figure 30: Time weighted load curve for Zaragoza - Canfranc.
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Grant Agreement Number: 101006633

-
FCHZ RA /L Fuel Cell Hybrid Power Pack for Rail Applications
00

Deliverable Number: D1.1

5.1.1.2 Madrid — Soria

Table 12: Use-case Madrid - Soria

Service: Madrid - Soria

Stops [#]: 10
Vehicle: AUT 599
#
& &
‘f - & @
f & elec:megx oﬁ& @
@f e@ﬁ@ @f fﬁf féf? @;ff .a;’é' 9&6:0’@’ @#@
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distance {m)

Figure 31: Operational profile Madrid - Soria
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Figure 32: Vehicle operation over a business day for Madrid - Soria.
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Grant Agreement Number: 101006633
Deliverable Number: D1.1

Table 13: Line-based requirements for Madrid - Soria.

Use-case attribute Value Unit
Route length 246 km
Electrification degree 62 %
Start-end elevation gain 323 m
Start-end slope 1.32 %o
Travel time 3.5 h
Average stop distance 24.56 km
Average velocity 70.2 Km/h

Table 14: Use-case based requirements for Madrid - Soria.

Use-case attribute Value Unit
Trips per day 3 #
Daily distance 737 Km
Daily travel time 10.5 h
Longest autonomy 93 Km
Cumulated autonomy over a business day 279 Km

Percentile Absolute Power at the Wheel
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Figure 33: Time weighted load curve for Madrid - Soria.
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Grant Agreement Number: 101006633
Deliverable Number: D1.1

5.1.1.3 Madrid — Talavera de la Reina

Table 15: Use-case Madrid - Talavera de la Reina.

Service: Madrid - Talavera de la Reina

Stops [#]:

6

Vehicle:

AUT 599
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Figure 34: Operational profile Madrid - Talavera de la Reina.
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Figure 35: Vehicle operation over a business day for Madrid - Talavera de la Reina.
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Fuel Cell Hybrid Power Pack for Rail Applications
Grant Agreement Number: 101006633
Deliverable Number: D1.1

Table 16: Line-based requirements for Madrid - Talavera de la Reina.

Use-case attribute Value Unit
Route length 137 km
Electrification degree 18 %
Start-end elevation gain 18 m
Start-end slope 237 %o
Travel time 1.73 h
Average stop distance 2.08 km
Average velocity 22.83 Km/h
Table 17: Use-case based requirements for Madrid - Talavera de la Reina.
Use-case attribute Value Unit
Trips per day 2 #
Daily distance 274 Km
Daily travel time 4.17 h
Longest autonomy 112 Km
Cumulated autonomy over a business day 224 Km
Avg. speed limitation 130 Km/h
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Figure 36: Time weighted load curves for Madrid - Talavera de la Reina.
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Grant Agreement Number: 101006633

-
FCHZ RA /L Fuel Cell Hybrid Power Pack for Rail Applications
00

Deliverable Number: D1.1

5.1.1.4 Valencia — Alcoy/Alcoi

Table 18: Use-case Valencia - Alcoy.

Service: Valencia — Alcoy/Alcoi

22:00:00 I
00:00:00

Stops [#]: 13
Vehicle: AUT 592
f electrified
Ry W yes no
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Figure 37: Operational profile Valencia - Alcoy.
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Figure 38: Vehicle operation over a business day for Valencia - Alcoy.
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Grant Agreement Number: 101006633
Deliverable Number: D1.1

Table 19: Line-based requirements for Valencia - Alcoy.

Requirement Value Unit
Route length 120 km
Electrification degree 46 %
Start-end elevation gain 545 m
Start-end slope 4.54 %o
Travel time 2.08 h
Average stop distance 9.23 km
Average velocity 57.6 Km/h

Table 20: Use-case based requirements for Valencia - Alcoy.

Route specific and operational requirements Value Unit
Trips per day 4 #
Daily distance 480 Km
Daily travel time 8.33 h
Longest autonomy 64 Km
Cumulated autonomy over a business day 258 Km

Percentile Absolute Power at the Wheel
T T
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Figure 39: Time weighted load curves for Valencia - Alcoy.
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Grant Agreement Number: 101006633

-
FCHZ RA /L Fuel Cell Hybrid Power Pack for Rail Applications
00

Deliverable Number: D1.1

5.1.1.5 Valencia —Zaragoza

Table 21: Use-case Valencia - Zaragoza.

Service: Valencia - Zaragoza

Stops [#]: 26
Vehicle: AUT 599

electrified
Wys ono - &“f
& j##;f
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S5 & aoéo "
“iE e 1220 24 1323
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distance (m}
Figure 40: Operational profile Valencia - Zaragoza.
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Figure 41: Vehicle operation over a business day for Valencia - Zaragoza.
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Deliverable Number: D1.1

e
ﬁCHz RA IL Fuel Cell Hybrid Power Pack for Rail Applications
(Ham H)

Table 22: Line-based requirements for Valencia - Zaragoza.

Requirement Value Unit
Route length 366 km
Electrification degree 14 %
Start-end elevation gain 187 m
Start-end slope 0.51 %o
Travel time 5.75 h
Average stop distance 14.06 km
Average speed 63.6 Km/h

Table 23: Use-case based requirements for Valencia - Zaragoza.

Route specific and operational requirements Value Unit
Trips per day 2 #
Daily distance 731 Km
Daily travel time 11.5 h
Longest autonomy 313 Km
Cumulated autonomy over a business day 627 Km

Percentile Absolute Power at the Wheel
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Figure 42: Time weighted load curves for Valencia - Zaragoza.
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Deliverable Number: D1.1

-
ﬁCHZ RA /L Fuel Cell Hybrid Power Pack for Rail Applications
(Ha H]

5.1.1.6 A Coruiia — Ferrol

Table 24: Use-case A Corufia — Ferrol.

Service: A Coruia - Ferrol

Stops [#]: 13
Vehicle: AUT 594

c3
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Figure 43: Operational profile A Corufia — Ferrol.
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Figure 44:Vehicle operation over a business day for A Corufia — Ferrol.
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Table 25: Line-based requirements for A Corufia — Ferrol.

Requirement Value Unit
Route length 69 km
Electrification degree 0 %
Start-end elevation gain 1 m
Start-end slope 0.02 %o
Travel time 1.97 h
Average stop distance 5.29 km
Average speed 349 Km/h

Table 26: Use-case based requirements for A Corufia — Ferrol.

Route specific and operational requirements Value Unit
Trips per day 2 #
Daily distance 137 Km
Daily travel time 3.93 h
Longest autonomy 69 Km
Cumulated autonomy over a business day 137 Km

Percentile Absolute Power at the Wheel
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Figure 45: Time weighted load curves for A Corufia — Ferrol.

Page 40 of 96

FCH FUEL CELLS AND HYDROGEN |SEaes
JOINT UNDERTAKING



.
CFCH,RAIL
)

5.1.1.7 A Coruia - Monforte

Table 27: Use-case A Corufia — Monforte.

Fuel Cell Hybrid Power Pack for Rail Applications

Grant Agreement Number: 101006633
Deliverable Number: D1.1

Service: A Coruina — Monforte

Stops [#]: 19
Vehicle: AUT 594
ﬁ’ & f“’
@"f, @f \}@ "“fr (ﬁs‘ éo clectrifigg” 69 9 600@’ ff
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Figure 46: Operational profile A Coruiia — Monforte.
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Figure 47: Vehicle operation over a business day for A Corufia — Monforte.
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Grant Agreement Number: 101006633
Deliverable Number: D1.1

Table 28: Line-based requirements for A Corufia — Monforte.

Requirement Value Unit
Route length 189 km
Electrification degree 0 %
Start-end elevation gain 267 m
Start-end slope 1.41 %o
Travel time 3 h
Average stop distance 9.94 km
Average speed 62.9 Km/h

Table 29: Use-case based requirements for A Corufia — Monforte.

Route specific and operational requirements Value Unit
Trips per day 2 #
Daily distance 378 Km
Daily travel time 6 h
Longest autonomy 189 Km
Cumulated autonomy over a business day 378 Km

Percentile Absolute Power at the Wheel
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Figure 48: Time weighted load curves for A Corufia — Monforte.
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Grant Agreement Number: 101006633

Deliverable Number: D1.1

5.1.1.8 Madrid — Sevilla

Table 30: Use-case Madrid - Sevilla.

Service: Madrid - Sevilla

Stops [#]: 25
Vehicle: AUT 599
electrified
K f W yes no
o"é (?Qp & o <”§ & j \?f E@Q f
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Figure 49: Operational profile Madrid - Sevilla.
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Figure 50: Vehicle operation over a business day for Madrid - Sevilla.
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Grant Agreement Number: 101006633
Deliverable Number: D1.1

Table 31: Line-based requirements for Madrid - Sevilla.

Requirement Value Unit
Route length 671 km
Electrification degree 9 %
Start-end elevation gain 599 m
Start-end slope 0.89 %o
Travel time 7.77 h
Average stop distance 26.85 km
Average speed 86.4 Km/h

Table 32: Use-case based requirements for Madrid - Sevilla.

Route specific and operational requirements Value Unit
Trips per day 1 #
Daily distance 671 Km
Daily travel time 7.77 h
Longest autonomy 612 Km
Cumulated autonomy over a business day 612 Km

Percentile Absolute Power at the Wheel
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Figure 51: Time weighted load curves for Madrid - Sevilla.
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Grant Agreement Number: 101006633

-
FCHZ RA /L Fuel Cell Hybrid Power Pack for Rail Applications
00

Deliverable Number: D1.1

5.1.1.9 Murcia del Carmen — Alacant

Table 33: Use-case Murcia del Carmen - Alacant.

Service: Murcia del Carmen — Alacant

Stops [#]: 8
Vehicle: AUT 592
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Figure 52: Operational profile Murcia del Carmen - Alacant.
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Figure 53: Vehicle operation over a business day for Murcia del Carmen - Alacant.
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Grant Agreement Number: 101006633
Deliverable Number: D1.1

Table 34: Line-based requirements for Murcia del Carmen - Alacant.

Requirement Value Unit
Route length 78 km
Electrification degree 0 %
Start-end elevation gain 16 m
Start-end slope 0.21 %o
Travel time 1.68 h
Average stop distance 9.74 km
Average speed 46.3 Km/h

Table 35: Use-case based requirements for Murcia del Carmen - Alacant.

Route specific and operational requirements Value Unit
Trips per day 10 #
Daily distance 779 Km
Daily travel time 16.83 h
Longest autonomy 78 Km
Cumulated autonomy over a business day 779 Km

Percentile Absolute Power
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Figure 54: Time weighted load curves for Murcia del Carmen - Alacant.
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Grant Agreement Number: 101006633

Deliverable Number: D1.1

5.1.1.10 Madrid — Sevilla

Table 36: Use-case Madrid - Sevilla.

Service: Madrid - Sevilla

Stops [#]: 25
Vehicle: AUT 599
electrified
K f W yes no
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Figure 55: Operational profile Madrid - Sevilla.
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Figure 56: Vehicle operation over a business day for Madrid - Sevilla.
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Grant Agreement Number: 101006633
Deliverable Number: D1.1

Table 37: Line-based requirements for Madrid - Sevilla.

Requirement Value Unit
Route length 671 km
Electrification degree 9 %
Start-end elevation gain 599 m
Start-end slope 0.89 %o
Travel time 7.77 h
Average stop distance 26.85 km
Average speed 86.4 Km/h

Table 38: Use-case based requirements for Madrid - Sevilla.

Route specific and operational requirements Value Unit
Trips per day 1 #
Daily distance 671 Km
Daily travel time 7.77 h
Longest autonomy 612 Km
Cumulated autonomy over a business day 612 Km

Percentile Absolute Power at the Wheel

1200
Percentile Values
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1000 O s
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Figure 57: Time weighted load curves for Madrid - Sevilla.
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5.1.1.11 Porto - Vigo

Table 39: Use-case Porto - Vigo.

Service: Porto - Vigo

Fuel Cell Hybrid Power Pack for Rail Applications
Grant Agreement Number: 101006633
Deliverable Number: D1.1

&

& -a-'é

12:00

Stops [#]: 19
Vehicle: AUT 592
electrified
&2 W yes
& o e <&
s @ 5 & & <& \s,ﬂ"be & £
& & & ﬁ e 3 S i & & ® Fg P Qfg @é‘é’ &
& S & A W S <4 4 W o R\
L2 . L -
08:22 08:34 0850 0901 0945 1009 1020 1057 1108 1130

08:13 0843 0912 0937 0957 1035 1144

150
=
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g 1009 — 3
w
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=
£
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z
@
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Figure 58: Operational profile Porto — Vigo (service currently not active - assumed timetable).
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Figure 59: Vehicle operation over a business day for Porto — Vigo (service currently not active - assumed timetable).
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Grant Agreement Number: 101006633
Deliverable Number: D1.1

Table 40: Line-based requirements for Porto - Vigo.

Requirement Value Unit
Route length 172 km
Electrification degree 72 %
Start-end elevation gain 50 m
Start-end slope 0.3 %o
Travel time 03:49 h
Average stop distance 9.05 km
Average speed 45 Km/h

Table 41: Use-case based requirements Porto - Vigo.

Route specific and operational requirements Value Unit
Trips per day 2 #
Daily distance 344 Km
Daily travel time 07:39 h
Longest autonomy 49 Km
Cumulated autonomy over a business day 98 Km

Percentile Absolute Power: All Out

Percentile Values
50%
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— 100%

1000

900
800
700

600

500

Power [kW]

400

300

200 f
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Time log. [s]

Figure 60: Time weighted load curves for Porto - Vigo.
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(Ha H]

Grant Agreement Number: 101006633
Deliverable Number: D1.1

5.1.2 Germany

5.1.2.1 Emmelshausen - Boppard

Table 42: Use-case Emmelshausen - Boppard.

Service: Emmelshausen — Boppard
Stops [#]: 6
Vehicle:

Regio Shuttle RS1

elevation (m)
R

T T T T T T T
Ok 05c 1k 15¢ 2x 25 & 35 4k 45 S5¢ 55 S 85 vk T75¢ 8k 85 Bk 85 10k 105 1k 115 12 125 13k 13.5% 14k 145 15k
distance (m)

Figure 61: Operational profile Emmelshausen - Boppard.
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Grant Agreement Number: 101006633
Deliverable Number: D1.1

c
ﬁCHZ RA /L Fuel Cell Hybrid Power Pack for Rail Applications
00

Track kilometer [km]

0 5 10 15 20 25 30
00:00:00 % :
t
02:00:00 '_:___IE electrified no caternary § :_
0400:00 | & sl
06:00:00 t & — é:.
__ 08:00:00 — —— En
£ —— 1
£ 100000 = ——— '
é 12:00:00 %ﬁ— 3
£ 14:00:00 =
" 1600:00 —
18:00:00 1w - —————
20:00:00 : — 1
00:00:00
=B=Train 1
Figure 62: Vehicle operation over a business day for Emmelshausen - Boppard.
Table 43: Line-based requirements for Emmelshausen - Boppard.
Requirement Value Unit
Route length 15 km
Electrification degree 6 %
Start-end elevation gain 375 m
Start-end slope 24.43 %o
Travel time 0.5 h
Average stop distance 2.56 km
Average speed 30.7 Km/h
Table 44: Use-case based requirements for Emmelshausen - Boppard.
Route specific and operational requirements Value Unit
Trips per day 28 #
Daily distance 430 Km
Daily travel time 14 h
Longest autonomy 14 Km
Cumulated autonomy over a business day 406 Km
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ﬁCHZ RA /L Fuel Cell Hybrid Power Pack for Rail Applications
00

Grant Agreement Number: 101006633
Deliverable Number: D1.1

Percentile Absolute Power at the Wheel

Percentile Values
50%
— 55%
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w
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Figure 63: Time weighted load curves for Emmelshausen — Boppard.
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Grant Agreement Number: 101006633
Deliverable Number: D1.1

-
ﬁCHZ RA /L Fuel Cell Hybrid Power Pack for Rail Applications
(Ha H]

5.1.2.2 Erfurt - Rennsteig

Table 45: Use-case Erfurt - Rennsteig.

Service: Erfurt - Rennsteig

Stops [#]: 18
Vehicle: Regio Shuttle RS1
. o
& & « b ¢

& 6&* & & &‘P&@ » Foo P f & P s &

& & & ST e e@‘g P A r 7 S
T - : =
g
i
0 I R N

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
Ok % £ 8k Bk 10k 12k 14k 18k 18k 20k 2% 24k 28k 28k 30k 32 34k 306k 3Bk 40k 42k 44k 48k 48k 50k 52k 54k 58k 58k B0k 62k B84k
distance (m)

Figure 64: Operational profile Erfurt - Rennsteig.
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06:00:00€ | **
o
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Figure 65: Vehicle operation over a business day for Erfurt - Rennsteig.
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Grant Agreement Number: 101006633
Deliverable Number: D1.1

Table 46: Line-based requirements for Erfurt - Rennsteig.

Requirement Value Unit
Route length 64 km
Electrification degree 20 %
Start-end elevation gain 526 m
Start-end slope 8.19 %o
Travel time 1.52 h
Average stop distance 3.57 km
Average speed 42.3 Km/h

Table 47: Use-case based requirements for Erfurt - Rennsteig.

Route specific and operational requirements Value Unit
Trips per day 4 #
Daily distance 257 Km
Daily travel time 6.07 h
Longest autonomy 51 Km
Cumulated autonomy over a business day 204 Km

Percentile Absolute Power at the Wheel

500 N ( LR Percentile Values

\\\\\\\
\

— 55%

60%
— 65%
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Figure 66: Time weighted load curves for Erfurt Rennsteig.
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Grant Agreement Number: 101006633

-
FCHZ RA /L Fuel Cell Hybrid Power Pack for Rail Applications
00

Deliverable Number: D1.1

5.1.2.3 Stuttgart - Aulendorf

Table 48: Stuttgart - Aulendorf.

Service: Stuttgart - Aulendorf

Stops [#]: 14
Vehicle: Shuttle RS1
electrified
W ves no
& §
& & 8 &
& s & # & f 2
5 & F£ A,
12:15 1251 1259 * 13?19 13:'!1 13.:45 14 11 * 14?5 1438 14:52
1311 1419 14330 14:44
150 =
-E.IUU — —__- ______—_ —-_— — _ —
é 50 -
-E-SUU
-é 400
H
® 200
ok 1I0k Zbk JE)k 4E)k 50k 60k 7bk Slnk Qbk 1dOK |1I0k 1ink 130k 14‘Dk 1§0k |S‘Dk 17‘0)( 18‘0)( 1dﬂk 200k
dis tance (m)
Figure 67: Operational profile Stuttgart - Aulendorf.
Track kilometer [km]
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|
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Figure 68: Vehicle operation over a business day for Stuttgart - Aulendorf.
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Grant Agreement Number: 101006633
Deliverable Number: D1.1

Table 49: Line-based requirements for Stuttgart - Aulendorf.

Requirement Value Unit
Route length 203 km
Electrification degree 35 %
Start-end elevation gain 300 m
Start-end slope 1.48 %o
Travel time 2.62 h
Average stop distance 14.49 km
Average speed 77.5 Km/h

Table 50: Use-case based requirements for Stuttgart - Aulendorf.

Route specific and operational requirements Value Unit
Trips per day 6 #
Daily distance 1217 Km
Daily travel time 15.7 h
Longest autonomy 131 Km
Cumulated autonomy over a business day 786 Km

Percentile Absolute Power at the Wheel

500 ~ N N Percentile Values
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Figure 69: Time weighted load curves for Stuttgart Aulendorf.
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Grant Agreement Number: 101006633

Deliverable Number: D1.1

5.1.2.4 Bremen -Osnabriick

Table 51: Use-case Bremen - Osnabriick.

Service: Bremen -Osnabriick

Stops [#]: 22
Vehicle: Lint 41 /BR648
electrified
(& N . & M yes no
&

& & & I A F AP F &

& & & & & &
5 ¢ & & F Ly F LS e AT s
0825 0634 ll;#l] M‘W [ﬁ-ﬂB * ll??i] 07.:15 07-24 ) 07.40 * 07.40 * IB.[H ° IB.:|5 * us'za
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150 =
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Ewo
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a
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E
‘é’w-
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° ok 3k IIDI 1'5! 2'0! 35'! 3'0! 3'5! AIOI 45k S0k 55k (1] 4 65k Tok 75K &0k &5k a0k a5k IOIC( IDISI IIIOI 11'& |2IC( Ié‘l
distance (m}
Figure 70: Operational profile Bremen - Osnabriick.
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Figure 71: Vehicle operation over a business day for Bremen - Osnabriick.
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Grant Agreement Number: 101006633
Deliverable Number: D1.1

Table 52: Line-based requirements for Bremen - Osnabriick.

Requirement Value Unit
Route length 126 km
Electrification degree 15 %
Start-end elevation gain 63 m
Start-end slope 0.5 %o
Travel time 2.2 h
Average stop distance 5.72 km
Average speed 57.2 Km/h

Table 53: Use-case based requirements for Bremen - Osnabriick.

Route specific and operational requirements Value Unit
Trips per day 8 #
Daily distance 1007 Km
Daily travel time 17.6 h
Longest autonomy 107 Km
Cumulated autonomy over a business day 858 Km

Percentile Absolute Power at the Wheel

600
Percentile Values

50%
500 —— 55%
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Figure 72: Time weighted load curves for Bremen -Osnabriick.
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Grant Agreement Number: 101006633
Deliverable Number: D1.1

-
ﬁCHZ RA /L Fuel Cell Hybrid Power Pack for Rail Applications
(Ha H]

5.1.2.5 Diusseldorf - Kleve

Table 54: Use-case Diisseldorf - Kleve.

Service: Diisseldorf - Kleve

Stops [#]: 13
Vehicle: Lint 41 /BR648
ﬁ &“ W yes ne
@ & @f & :
& * * .
& & & A S & E e -fx &
'E. 100 _7__ T —— — — — |——

=
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~ oW e
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distance (m)

Figure 73: Operational profile Diisseldorf - Kleve.
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Figure 74: Vehicle operation over a business day for Diisseldorf - Kleve.
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Fuel Cell Hybrid Power Pack for Rail Applications
Grant Agreement Number: 101006633
Deliverable Number: D1.1

Table 55: Line-based requirements for Diisseldorf - Kleve.

Requirement Value Unit
Route length 92 km
Electrification degree 30 %
Start-end elevation gain 27 m
Start-end slope 0.3 %o
Travel time 1.43 h
Average stop distance 7.06 km
Average speed 64.1 Km/h
Table 56: Use-case based requirements for Diisseldorf - Kleve.
Route specific and operational requirements Value Unit
Trips per day 11 #
Daily distance 1010 Km
Daily travel time 15.77 h
Longest autonomy 64 Km
Cumulated autonomy over a business day 707 Km
Percentile Absolute Power at the Wheel
- T .
Percentile Values
50%
500 — 55%
60%
- — 65%
= — 0%
= 400 — 5%
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Figure 75: Time weighted load curves for Diisseldorf -Kleve.
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(Ha H]

Grant Agreement Number: 101006633
Deliverable Number: D1.1

5.1.2.6 Augsburg - Ingolstadt

Table 57: Use-case Augsburg - Ingolstadt.

Service: Ausgburg - Ingolstadt

Stops [#]: 11

Vehicle: Lint 41 /BR648

6&0 electrified
@f - d@ - Myes ©ono
-
& f +F & & f" oﬁ &
S8 q{ef iy & & & & f &
S & <+ o & & o <F
18:45 ° 18?54 ﬂ;ll! H;M 19.:1 1 19?16 19‘24 10?33 19:46
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distance (m)

Figure 76: Operational profile Augsburg - Ingolstadt.
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Figure 77: Vehicle operation over a business day for Augsburg - Ingolstadt.
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Grant Agreement Number: 101006633
Deliverable Number: D1.1

Table 58: Line-based requirements for Augsburg - Ingolstadt.

Requirement Value Unit
Route length 67 km
Electrification degree 15 %
Start-end elevation gain 120 m
Start-end slope 1.78 %o
Travel time 1.03 h
Average stop distance 6.13 km
Average speed 65.2 Km/h

Table 59: Use-case based requirements for Augsburg - Ingolstadt.

Route specific and operational requirements Value Unit
Trips per day 14 #
Daily distance 943 Km
Daily travel time 14.47 h
Longest autonomy 57 Km
Cumulated autonomy over a business day 800 Km

Percentile Absolute Power at the Wheel

600
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Figure 78: Time weighted load curves for Augsburg - Ingolstadt.
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Grant Agreement Number: 101006633

-
FCHZ RA /L Fuel Cell Hybrid Power Pack for Rail Applications
00

Deliverable Number: D1.1

5.1.2.7 Cuxhaven - Bremerhaven

Table 60: Use-case Cuxhaven - Bremerhaven.

Service: Cuxhaven - Bremerhaven

Stops [#]: 6
Vehicle: Lint 41 /BR648
electrified
Wyes oo
& & ﬁp@@ f?ﬁ @@ﬁ
& & & & &
“Z-:” “.ﬂ] 12‘01 12-117 1218 1223
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2 50
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Figure 79: Operational profile Cuxhaven - Bremerhaven.
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Figure 80: Vehicle operation over a business day for Cuxhaven - Bremerhaven.
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Grant Agreement Number: 101006633
Deliverable Number: D1.1

Table 61: Line-based requirements for Cuxhaven - Bremerhaven.

Requirement Value Unit
Route length 44 km
Electrification degree 15 %
Start-end elevation gain 3 m
Start-end slope 0.06 %o
Travel time 0.73 h
Average stop distance 7.27 km
Average speed 59.5 Km/h

Table 62: Use-case based requirements for Cuxhaven - Bremerhaven.

Route specific and operational requirements Value Unit
Trips per day 18 #
Daily distance 785 Km
Daily travel time 13.2 h
Longest autonomy 37 Km
Cumulated autonomy over a business day 668 Km

Percentile Absolute Power at the Wheel
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Figure 81: Time weighted load curves for Cuxhaven -Bremerhaven.
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Grant Agreement Number: 101006633
Deliverable Number: D1.1
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5.1.2.8 Gottingen - Nordhausen

Table 63:Use-case Géttingen - Nordhausen.

Service: Gottingen — Nordhausen

Stops [#]: 15
Vehicle: Lint 41 /BR648
1f electrified
- W yes no &
> & & @
f‘f & & ey &
s # LA g & &5
& F
& s & +f & & £ P & & LS
05:49 05:58 0'!‘04 07?12 07?18 07.22 07.29 0'!‘35 - 07.51 l]'!‘ﬂ * u&'w y l;?iﬁ
0748 e 08:10
Ewo I
E a0 = — =
E
‘gzoo
E
L3 H 108 15 20K 25k 30k 350 40K 15K 50k BT 60k 85k 70k 75k 30K S
distance {m}

Figure 82: Operational profile Géttingen - Nordhausen.
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Figure 83: Vehicle operation over a business day for Géttingen - Nordhausen.
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Table 64: Line-based requirements for Géttingen - Nordhausen.

Requirement Value Unit
Route length 89 km
Electrification degree 21 %
Start-end elevation gain 34 m
Start-end slope 0.39 %o
Travel time 1.43 h
Average stop distance 5.9 km
Average speed 61.8 Km/h

Table 65: Use-case based requirements for Géttingen - Nordhausen.

Route specific and operational requirements Value Unit
Trips per day 6 #
Daily distance 531 Km
Daily travel time 8.6 h
Longest autonomy 70 Km
Cumulated autonomy over a business day 417 Km

Percentile Absolute Power at the Wheel

600
Percentile Values

50%
500 — 55%
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_ — 65%
= AV ) — T0%
= 400 WA s
3 ] i | == — 0%
2 I - : — 85%
= | —— 0%
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= - — | R i — 92%
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3 — 94%
2 200 — o5%
— I — 96%
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Figure 84: Time weighted load curves for Géttingen — Nordhausen.
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5.1.2.9 Eberswalde - Templin

Table 66: Use-case Eberswalde - Templin.

Fuel Cell Hybrid Power Pack for Rail Applications

Grant Agreement Number: 101006633
Deliverable Number: D1.1

Service: Eberswalde — Templin

Stops [#]: 12
Vehicle: Regio Shuttle RS1
‘a
@ f {‘#f f@f a3 M yes n:}ﬁé@&*
& &
# f ‘e‘& ‘e‘& & ﬁ & &
& @ & &S & & £ & F
1:5 1200 12‘05 12‘:’10 12.13 12‘17 11:32 12‘36 12?41 1545 12:51 12.:59
ESO
E

)
z

N

E
E 40
:
o 204
’ ok 2‘! L'y -1} SII 10k 12K lil 16k 18k 2IE( 22k 24k Zét K 30K 35! 21y 36K 3‘3! 40K 42k -i-lil 48K
distance {m)
Figure 85: Operational profile Eberswalde - Templin.
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Figure 86: Vehicle operation over a business day for Eberswalde - Templin.
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Table 67: Line-based requirements for Eberswalde - Templin.

Requirement Value Unit
Route length 46 km
Electrification degree 11 %
Start-end elevation gain 33 m
Start-end slope 0.71 %o
Travel time 1.05 h
Average stop distance 3.84 km
Average speed 439 Km/h

Table 68: Use-case based requirements for Eberswalde - Templin.

Route specific and operational requirements Value Unit
Trips per day 9 #
Daily distance 415 Km
Daily travel time 9.45 h
Longest autonomy 41 Km
Cumulated autonomy over a business day 369 Km

Percentile Absolute Power at the Wheel

Percentile Values
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Figure 87: Time weighted load curves for Eberswalde — Templin.
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5.1.2.10 Blumberg - Rottweil

Table 69: Blumberg - Rottweil.

Fuel Cell Hybrid Power Pack for Rail Applications
Grant Agreement Number: 101006633
Deliverable Number: D1.1

Service: Blumberg — Rottweil

Stops [#]:

26

Vehicle:

Regio Shuttle RS1

electrified
& Wy &
‘ S
; & «6«6 ~x’~, & ‘é? & FES
1ll 16 . I]:ZB 1031 1m3 :l]-ﬂ-!l' 10:55 106 1111 1113 120 1M 11:32 113014
1024 1029 10:35 10:48 10:51 104 109 117 1naz 11:35
2 100 —— - T [ __
E_ -
B 50 — — — — —
E
1]
‘ESSD
_‘ESOD
b
o 550
e ok x -i-l Bk 2k |l-] |I2I |-|1I |él 1|3I 2’5! 2‘2: 2-1: 2‘6‘ ZéI 33! 3‘2! 3-‘{! 3%! 3‘8! 46: -{‘2! -{-‘{I J-éI Jél 56: 55! 5-‘1! SéI
distanee {m}
Figure 88: Operational profile Blumberg - Rottweil.
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Figure 89: Vehicle operation over a business day for Blumberg - Rottweil.
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Table 70: Line-based requirements for Blumberg - Rottweil.

Requirement Value Unit
Route length 56 km
Electrification degree 58 %
Start-end elevation gain 140 m
Start-end slope 2.49 %o
Travel time 1.42 h
Average stop distance 2.17 km
Average speed 39.8 Km/h

Table 71: Use-case based requirements for Blumberg - Rottweil.

Route specific and operational requirements Value Unit
Trips per day 4 #
Daily distance 225 Km
Daily travel time 5.67 h
Longest autonomy 15 Km
Cumulated autonomy over a business day 95 Km

Percentile Absolute Power at the Wheel

Percentile Values
50%
55%
60%
65%
— T0%
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Figure 90: Time weighted load curves for Blumberg - Rottweil.
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5.1.2.11 Magdeburg - Bernburg

Table 72: Use-case Magdeburg - Bernburg.

Service: Magdeburg - Bernburg

Stops [#]: 10
Vehicle: Lint 41 /BR648
electrified
W yes no ‘?
& o & o & & o
& f .f& A P
& & PR AV 4
4z 13:44 1355 1_4.1157 ﬁtﬁ 14:19 14?28 1-;33 ﬁ’iﬂ 14‘:42
gmo B _ =
E 504
ESO-
.159; 404
0Ok = 4k 13 Ek 10k 12 14k 16k 18k 20k 22k E;KShmZ:l{m) 28k 30k 32k 34k 3k 3% 40k 42k 44k 48k 43k Sk
Figure 91: Operational profile Magdeburg - Bernburg.
Table 73: Line-based requirements for Magdeburg - Bernburg.
Requirement Value Unit
Route length 51 km
Electrification degree 55 %
Start-end elevation gain 11 m
Start-end slope 0.22 %o
Travel time 1 h
Average stop distance 5.11 km
Average speed 51.1 Km/h
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Table 74: Use-case based requirements for Magdeburg - Bernburg.

Route specific and operational requirements Value Unit
Trips per day 5 #
Daily distance 255 Km
Daily travel time 5 h
Longest autonomy 23 Km
Cumulated autonomy over a business day 115 Km

Percentile Absolute Power at the Wheel

600 l
’ ! ! ! | Percentile Values
i ; ; ] 50%
500. e PR T - e e aaaay . - _55&_’«":|
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- I — 65%
= i i ] — 7%
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Figure 92: Time weighted load curves for Magdeburg — Bernburg.
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5.1.2.12 Pforzheim - Horb

Table 75: Use-case Pforzheim - Horb.

Service: Pforzheim - Horb

Stops [#]: 18
Vehicle: Regio Shuttle RS1
alectrified
f ‘99@ @6\. yes no
b
L& & & 6“’ &
1651 171 1720 1T 29. 1733 1730 1742 1756
1828 172873
o1 ] ___
S L
2 50
E
o
%wu
‘E
3300
Ok 2k 4k Bk B 10k 12k 14k 18K 13k 20k 2 2% 26 28K 30k 326 34k 35K 380 40k 420 Mk 45K 4 SOk 52k 5S4k SEK 5Bk 60K B2k G4k 66K Gk
distance (m)

Figure 93: Operational profile Pforzheim - Horb.

Table 76: Line-based requirements for Pforzheim - Horb.

Requirement Value Unit
Route length 69 km
Electrification degree 23 %
Start-end elevation gain 113 m
Start-end slope 1.64 %o
Travel time 1.33 h
Average stop distance 3.85 km
Average speed 52 Km/h
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Table 77: Use-case based requirements for Pforzheim - Horb.

Route specific and operational requirements Value Unit
Trips per day 8 #
Daily distance 555 Km
Daily travel time 10.67 h
Longest autonomy 53 Km
Cumulated autonomy over a business day 427 Km

Percentile Absolute Power at the Wheel
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Figure 94: Time weighted load curves for Pforzheim — Horb.
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5.1.2.13 Sigmaringen - Memmingen

Table 78: Use-case Sigmaringen - Memmingen.

Service: Sigmaringen - Memmingen

Stops [#]: 17
Vehicle: Regio Shuttle RS1
e.Ie:::ﬂedno
& 3 b
"{@ f «‘fﬁﬁ & ARV A SV N &‘f ef*
Emo- T & = 8 —_—

@
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@

=
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L

Figure 95: Operational profile Sigmaringen - Memmingen.

Table 79: Line-based requirements for Sigmaringen - Memmingen.

Requirement Value Unit
Route length 116 km
Electrification degree 37 %
Start-end elevation gain 30 m
Start-end slope 0.26 %o
Travel time 1.87 h
Average stop distance 6.85 km
Average speed 62.4 Km/h
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Table 80: Use-case based requirements for Sigmaringen - Memmingen.

Route specific and operational requirements Value Unit
Trips per day 4 #
Daily distance 466 Km
Daily travel time 7.47 h
Longest autonomy 74 Km
Cumulated autonomy over a business day 295 Km

Percentile Absolute Power at the Wheel

500 N

Percentile Values
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Figure 96: Time weighted load curves for Sigmaringen — Memmingen.
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5.1.3 (Summary of) use-case based requirements for multiple units

This chapter summarises the results of the use-case based analysis. Autonomies and lengths of
electrified sections are shown in Figure 97. Figure 98 shows traction energy at wheel and potential
recuperative braking energy at wheel for the chosen most demanding non-electrified contiguous
section. It is noted at this point, that the simulated vehicles do not have the possibility to recover
energy through recuperative braking. However, as this study aims to investigate on an electric
powertrain, it can be assumed that recuperation will be available. Henceforth, a theoretical electric
braking curve based on the electric traction curve is assumed. Figure 99 shows the specific traction
energy at wheel without recuperative braking energy. Figure 100 shows average traction power at the
wheel for catenary-free sections. Figure 101 shows the maximal traction power at wheel for catenary-
free sections. The methodology to assess the traction powers and energies are described in section
1.2.

Figure 97 shows the daily distances for each use-case. While the Spanish use-cases have larger route
lengths the circulations in Germany are higher, leading to similar or higher daily autonomies, resp.
autonomy requirements. Especially on lines with high frequencies, these requirements (e.g. Stuttgart
— Aulendorf) depend largely on the number of vehicles operated on the service.
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Figure 97: Use-cases daily autonomies.
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Figure 98: Traction energy at wheel and recuperative braking energy at wheel for the most demanding non-electrified
section.

Figure 92 shows the traction energy at wheel level for non-electrified sections. The energy is simulated
for an entire circulation. The energy therefore reflects mainly the route length but also the vehicle
mass which is larger for the Spanish use-cases (comp. section 5). To compare use-cases in terms of
energy demand Figure 99 shows the specific traction energy at wheel per tonne kilometre. This graph
indicates that topographic challenging lines (such as Zaragoza — Canfranc) can be less demanding in
terms of energy if the operational characteristic (e.g. low speeds on steep sections) are low. The other
way around, routes with flat topologies (such as Blumberg — Rottweil) might be especially challenging,
in this case due to constant stopping and acceleration (avg. stop distance 2.4 km). This of course
strongly depends on the vehicle used and the necessary auxiliary demands which are not considered
here. Again, both graphs are for catenary-free sections only, reflecting demands on the FCHPP.
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Figure 99: Specific traction energy at wheel (without recuperative braking energy) for the most demanding non-electrified
section.

The traction energy at wheel indicates the energy amount to be stored on the vehicles (i.e. hydrogen
tanks and traction battery capacity). The average power over catenary-free sections shown in Figure
100 indicates requirements on the fuel cell power. The max traction power (Figure 101) occurs in the
acceleration phase and reflects the maximal vehicle drivetrain configuration.

Page 80 of 96 FCH FUEL CELLS AND HYDROGEN
JOINT UNDERTAKING




Deliverable Number: D1.1

N Mean traction power [kW]

Grant Agreement Number: 101006633

Fuel Cell Hybrid Power Pack for Rail Applications

700 o
600
500 -
400
300
200
100 —

FCH_,RAIL

00

Jueyue) - ezobeiez
ezobelez - epuajep

109y - BI3U3jBA

obIA - ouod
JuEdIY-RI2INN

BUNIODY - SHOJUOK
B||IASS - pUpeR

BISAR[EL - PUPER

21105 - pUpeR

|o4i2d - BUNJIODY
uabuiwwaly - uabuuewbig
Binqulag - Bingapbepy)
uasneyplon - uabumon
11I9M30Y - Blaguinig
usABLIBWSIG - UBABYXND
pieddog - uasneysjawwg
Hopua|ny - pebpms
QUOH - WIaYzZ10)d
Ipelsjobul - hungsbny
Biaisuuay - unyg

ana[y - Hop|assng
A3NICRUSO - UaWRIg

uydwal - apjemsiaql

=
]
(4]
o
o=
=
(dlo)
-, =
mm
A_A|n
o
[0 e
==
=
o=
—
o=
— Y
=S

Figure 100: Average traction power for catenary-free sections.
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Figure 101: Peak traction power at wheel for catenary-free sections.

5.2 Use-cases mainline locomotives

In this chapter use-cases for mainline locomotives are shown. As described in section 4, mainline
locomotives cover most of the long-distance services. Furthermore, as the broad usage of multiple
units was only adopted at a later stage for the Spanish railway network, locomotives are deployed for
high-speed services as well. [3] As they carry higher masses than multiple unit-services and through
their operational scenarios, henceforth mainline locomotives represent challenging lines with the
necessity to provide significant higher traction power. Therefore, two services with long distances
were chosen, both currently covered with a configuration of ten coaches and one locomotive for the
use-case Madrid — Algeciras or respectively ten coaches and two locomotives for the use-case San
Sebastian — Lisboa. Both configurations could benefit greatly from bi-mode hydrogen propulsion. Both
use-cases have been considered in simulations in subsequent Deliverable D1.4. [4] Additionally,
deviations between the real and theoretical parameters for the simulation are already discussed in
D1.4 inducing a potential overestimation.
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Figure 102: Operational profile for San Sebastian — Lisboa.

Table 81: Line-based requirements for San Sebastian — Lisboa.

Use-case attribute Value Unit
Route length 1045 km
Electrification degree 88 %
Start-end elevation gain 4 m
Start-end slope 0 %o
Travel time 13.35 h
Average stop distance 49.76 km
Average velocity 78.3 Km/h
Longest autonomy 123 Km
Traction energy* 1509.3 kWh
Recuperative braking energy* 154.7 kWh
Specific traction energy (without recuperative braking energy)* 0.031 [kWh/km*t]
Average traction power* 1385.7 kw
Peak traction power* 3289.9 kw

* At wheel on catenary-free sections.
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Figure 104: Operational profile for Madrid - Algeciras.

Table 82: Line-based requirements for Madrid - Algeciras

Use-case attribute Value Unit
Route length 632 km
Electrification degree 72 %
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Start-end elevation gain 603 m
Start-end slope 0.95 %o
Travel time 5.9 h
Average stop distance 90.35 km
Average velocity 107.2 Km/h
Longest autonomy 176 Km
Traction energy* 3257 kWh
Recuperative braking energy* 285.4 kWh
Specific traction energy (without recuperative braking 0.031 [kWh/k
energy)* m*t]
Average traction power* 945.6 kw
Peak traction power* 2092 kw

* At wheel on catenary-free sections.
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Figure 105 Time weighted load curves for Madrid Algeciras.

5.3 Shunting locomotives

Unlike trains in passenger services, shunting locomotives do not follow a recurrent scheduled

operation. Shunting locomotives are mainly used for maintenance operation and manoeuvres. The

mass changes according to the number of wagons the locomotive is towing. Operations of shunting
locomotives are described in Deliverable 1.3 [3]. Pagenkopf et.al. (2022) [10] tracked operational
profiles of shunting locomotives have been analysed. From this, generic shunting profiles have been
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developed. To derive FCHPP requirements for shunting locomotives a use-case was designed based on
those generic shunting cycles. Figure 106 shows the representative load profile considered during the
simulations.
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Figure 106: Towing load (orange) and velocity profile (blue) of generic shunting operation [10].

The vehicle used for simulation is a generic shunting locomotive based on the Alstom Prima H3 as it
compares closely to the dominant types Class 310 and Class 311. Table 83 shows weight values for the
generic shunter used in the simulations in subsequent deliverables D1.3 and D1.4.

Table 83: Weight values for the generic shunting locomotive simulation model

Generic Shunting Locomotive

Locomotive (Tn) 67.5
Locomotive + maximum load during cycle Cargo

2047.5
(Tn)
Rotative masses (Tn) (Locomotive) 1.35

Rotative masses (Tn) (Locomotive + max. load 40.95
during cycle Cargo) '
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6. Conclusion

This chapter describes the general findings of this deliverable, discusses the achievable market
potential of hydrogen trains and draws a final conclusion.

This document describes infrastructural and operational requirement on hydrogen trains. It does so
by deriving attributes such as route length, autonomies, velocities and stop distances from public data
sources for three countries. In comparison, Spanish railway passenger services are longer with fewer
stops and few trips over a day while having rather challenging topologies. The topology demands are
less well reflected in the net elevation gain from start-to-end in the line analysis but can better be
understood by considering elevation profiles in use-case descriptions. In Portugal, only few lines
operated with DMU are potentially FCHMU-services as extensive electrification plans are ongoing. For
a selection of representative services use-cases are formed. For these use-cases, possible circulations
are considered and mechanical energy simulations are performed. The mechanical energy simulation
gives a first insight on requirements for a FCHPP, especially in terms of energy content and average
power for catenary-free sections. This is also the foundation for more through energy analysis and
component design in subsequent deliverables.

Considering the current market, alternative propulsion technologies are gaining ground in the field of
regional passenger rail transport. With the Coradia iLint from Alstom, a hydrogen electric multiple unit
has already reached market maturity. The model is already being used in regional railway operations.
Mireo Plus H of manufacturer Siemens will enter passenger operation in 2024 in German
Heidekrautbahn.

However, battery electric multiple units (BEMU) are playing an increasingly important role as a
competing technology. Battery trains are more advantageous in terms of energy efficiency, as they
incur lower energy conversion losses than fuel cell electric trains. This often makes them more cost-
effective and more energy-efficient to operate. However, so far there is currently (02/2022) no battery-
powered multiple unit that is operated in regular passenger service apart from temporary operational
trial runs. Rolling stock manufacturers Alstom (Coradia Continental) and Stadler (Flirt Akku) both
demonstrated BEMU-feasibility with prototype trains or will do shortly (Siemens Mireo Plus B). Tender
contracts have been concluded for deliveries of BEMU to German networks (e.g. Pfalznetz and
Nah.SH). Vehicles will start passenger services in 2023. In Niederrhein-Minsterland network in
Germany Civity BEMU manufactured by CAF will enter passenger service on December 2025. A major
disadvantage is the low range of battery trains. If battery trains are to be used on long non-electrified
lines, as is particularly common in Spain, regular electrification islands or recharging stations along the
route need to be installed. Hydrogen trains, on the other hand, can cover much longer autonomies. In
Spain, autonomies in the range of 200 to 600 km per trip are common, often with rather few
circulations. In Germany, the autonomies are significantly lower, but the routes are operated more
frequently on average, which again leads to higher autonomies. In both cases, there are autonomies
that can hardly be handled by battery-powered trains. Locomotive changes are particularly frequent
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on the longer routes that are operated with hauled locomotives. These time-consuming and expensive
changes could be reduced by employing bi-mode trains. Through-connection options for trains have
great potential to make daily train operations more flexible and offer customised connections, fitting
to the transport demands. However, a precise assessment of through-connection options is a case-by-
case consideration and cannot be carried out comprehensively across all countries.

In day-to-day operations, the cost of vehicle procurement plays a particularly important role when
switching to a new technology. The average service life of multiple units in Germany is around 30 years.
This also has an impact on the depreciation period. If major fleet renewals are carried out, this
represents an obstacle to the introduction of new technologies. In Spain, 43.5 percent of vehicles are
25 years and older (Figure 107). In Germany, a major renewal along the vehicle stock took place
between 2000 and 2005.

Vehl?g - ) 5 . 3 . _

0,0% 10,0% 20,0% 30,0% 40,0% 50,0% 60,0 % 70,0 % 80,0% 90,0 % 100,0 %
Percentage of total vehicle fleet

Figure 107: Percentage of vehicle ages of overall DMU fleet in Spain and Portugal.

It is unlikely that these younger vehicles will be phased out quickly and replaced with alternatively
powered trains. For these vehicles, a retrofit solution to hybrid or all-electric powertrains could be an
option, but being linked to a couple of technical, economical and approval related challenges. In all
countries considered, however, there are a large number of vehicles whose age suggests that they will
soon be phased out of service. In the current situation, where train manufacturers have to push ahead
with technology development and ramp up production capacities, the market promises sufficient sales
potential.
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